If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+4t-80=0
a = 4.9; b = 4; c = -80;
Δ = b2-4ac
Δ = 42-4·4.9·(-80)
Δ = 1584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1584}=\sqrt{144*11}=\sqrt{144}*\sqrt{11}=12\sqrt{11}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-12\sqrt{11}}{2*4.9}=\frac{-4-12\sqrt{11}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+12\sqrt{11}}{2*4.9}=\frac{-4+12\sqrt{11}}{9.8} $
| 2x+21+5x+6+90+54=360 | | (x+5)^2=x^2+25 | | |2x+2|=1 | | 78=–2(m+3)+m | | 3m-2(m=7)=m+14 | | 20x-12=48 | | 7j−4j−2j+2j+j=16 | | m^2-7=15 | | -n/5-9=-7 | | 7+a=7 | | 18k-14k-4K+3k-2k=I | | -4x+6=-5 | | 7y-4y-2y+y=14 | | 5(2x-1)=2x+7 | | 31+3k=10 | | 31=3k=10 | | 1/4(8x-12)=4x+17 | | 8u-3u-4u=17 | | 36/5x-10=5 | | 133-x=180 | | 8u−3u−4u=17 | | 55=5x+3÷4 | | 4z/10+6=-7 | | 1t÷3-6=10 | | -3x+45=8 | | 2+2x/5+5-x/2=19/10 | | 13d-11d-d+4d=10 | | 14=8+4÷1a | | 14=8+4÷a | | 2(6x-5)=6-3x+2 | | 15x=240/5 | | -3x-499994x+6)=-11 |